
Survivor: an Enhanced Controller Placement
Strategy for Improving SDN Survivability

Lucas F Müller, Rodrigo R Oliveira, Marcelo C Luizelli,
Luciano P Gaspary, Marinho P Barcellos

Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre, RS, Brazil
Email: {lfmuller, ruas.oliveira, mcluizelli, paschoal, marinho}@inf.ufrgs.br

Abstract—In SDN, forwarding devices can only operate cor-
rectly while connected to a logically centralized controller. To
avoid single-point-of-failure, controller architectures are usually
implemented as distributed systems. In this context, recent
literature identified fundamental issues, such as device isolation
and controller overload, and proposed controller placement
strategies to tackle them. However, current proposals have crucial
limitations: (i) device-controller connectivity is modeled using
single paths, yet in practice multiple concurrent connections may
occur; (ii) peaks in the arrival of new flows are only handled
on-demand, assuming that the network itself can sustain high
request rates; and (iii) failover mechanisms require predefined
information, which, in turn, has been overlooked. This paper
proposes Survivor, a controller placement strategy that addresses
these challenges. The strategy explicitly considers path diversity,
capacity, and failover mechanisms at network design. Compar-
isons to the state-of-the-art on survivable controller placement
show that Survivor is superior because (a) path diversity increases
the survivability significantly; and (b) capacity-awareness is
essential to handle overload during both normal and failover
states.

I. INTRODUCTION

Software-Defined Networking defines a new architecture
in which the control plane of network forwarding devices is
moved to a logically centralized controller. Although beneficial
for network management, SDN created an inherent depen-
dency relationship between the forwarding devices and the
controller. More precisely, devices need to remain connected to
the controller in order to operate properly, otherwise they apply
outdated policies and fail to deal with unspecified flows [1].
Therefore, a key challenge is to ensure the connectivity
between controller and devices in face of harmful events in
the network. Hereafter, this challenge will be referred to as
control plane survivability (or survivability, for short).

SDN architectures avoid single-point-of-failure by imple-
menting controllers as distributed systems [2], [3]. Although
replication increases survivability, fundamental aspects make
it insufficient. Particularly, two main issues must be properly
addressed. First, disruptions in the network can physically iso-
late forwarding devices from controller instances. Second, high
network demand may overload a controller replica, negatively
affecting responsiveness.

In order to tackle these issues, literature has proposed
different controller placement strategies [4]–[6]. However,
these proposals have three main limitations. First, connections
between forwarding devices and controller instances are mod-

eled using single paths; yet, in practice multiple concurrent
connections may occur. Second, changes in traffic load (such
as churn in the arrival of new flows) can only be handled on-
demand; this aspect assumes that the network has been planned
in advance for high request rates. Lastly, failover mechanisms
depend on predefined lists of backup controllers; such a list
is currently composed ad-hoc, which, in turn causes these
mechanisms to behave inefficiently.

This paper proposes Survivor, a novel controller placement
strategy that overcomes the above shortcomings. Survivor has
three main benefits. First, connectivity is enhanced by explic-
itly considering path diversity. Second, controller overload is
avoided proactively by adding capacity-awareness in the con-
troller placement. Third, failover mechanisms are improved by
means of a methodology for composing their list of backups.
Comparisons are performed to evaluate the performance of
the proposed solution. The main contributions of this paper
are threefold:

• Significant reduction on connectivity loss. Correctly
exploring the path diversity of the network (i.e.,
connectivity-awareness) reduces the probability of con-
nectivity loss in around 66% for single link failures.
Moreover, simply adding path diversity to current solu-
tions is not sufficient; the proposed solution still presents
between 2 and 3 times less disconnected devices in worst
case failures.

• More realistic controller placement strategy. Survivor
is the first strategy to consider capacity-awareness proac-
tively, since previous work handled requests churn on-
demand. Experiments show that capacity planning is
essential to avoid controller overload, specially during
failover. Additionally, the placement strategy is imple-
mented as an optimization model in order to generate
optimal results.

• Smarter recovery mechanisms. Survivor encompasses
heuristics for defining a list of backup controllers. A
methodology for composing such lists, modeled as a
generic heuristic framework, is developed and two heuris-
tics are implemented. As a result, the converging state of
the network can improve considerably depending on the
selected heuristic.

The remainder of this paper is organized as follows: Sec-
tion II introduces the fundamental concepts related to this

paper and discusses the main limitations of related work.
Section III presents the proposed strategy, while experiments
are evaluated in Section IV. Section V discusses the final
considerations and indicates possible future work.

II. BACKGROUND AND RELATED WORK

This section begins by identifying the considered set of
failures, and currently available failover mechanisms.

A. Failures and Failover Mechanisms

SDN establishes a dependency relationship between the
controller and the forwarding devices. More specifically, the
lack of connectivity between both systems causes network
malfunction, because devices get outdated and cease to re-
ceive instructions on how to forward new flows. Therefore,
it is important to analyze possible failure scenarios and the
available failover mechanisms1.

Failure scenarios. In line with previous work [4], [5], the
failures considered in this paper occur independently and in
both the data plane and control plane. In the data plane,
failures arise upon disruptions in links or forwarding devices.
In turn, control plane failures happen due to software or
hardware malfunction on the machine hosting the controller.
Pragmatically, in both cases the result of a failure is the loss
of connectivity between a set of routing devices and controller
instances.

Failover mechanisms. The OpenFlow Protocol [8] provides
mechanisms that allow a forwarding device to react upon
loss of connectivity with the controller. Towards this end,
devices maintain auxiliary connections and a list of backup
controllers. Auxiliary connections with the controller can be
defined, established and kept open in order for the device to
avoid unnecessary delays. Moreover, they can be established
over any path in the network that reaches the controller (e.g.,
link/node-disjoint paths, shortest-paths, widest-paths). In turn,
the list of backup controllers defines the order in which the
device will attempt to connect to different controller instances.
This mechanism is used when all connections to the primary
controller instance are lost (either due to massive link failures
or controller failure).

B. Survivable Controller Placement

The Controller Placement Problem [9] is an optimization
problem which consists of finding the best placement for
controller instances such that a given metric is optimized.
Accordingly, the Survivable Controller Placement consists of
finding the best placement that optimizes a survivability-
related metric. This subsection reviews work that attempt to
maximize control plane survivability according to two metrics:
network disruptions [4], [5] and controller overload [6].

In respect to disruptions, current controller placements min-
imize the likelihood of disconnection. Zhang et al. [4] defines a

1This paper only considers failover mechanisms that help reestablishing
the controller-device connections. For mechanisms that provide minimal
functionality when connections cannot be reestablished, the interested reader
may refer to the data plane connectivity literature [7] or the OpenFlow
Protocol Specification [8].

min-cut algorithm that specifies clusters of forwarding devices
and then places one controller instance in each cluster’s
centroid. In turn, Hu et al. [5] chooses controller instances
such that the chance of connectivity loss is minimized. In both
strategies, connections are defined according to the shortest-
path between controller instances and forwarding devices.

In contrast, Bari et al. [6] study the dynamic placement of
controller instances over the network topology. The authors
consider that the initial position is somehow predefined and
are limited to turn on/off controllers according to a particular
network load. Hence, controller-device connections are defined
dynamically and on-demand.

C. Limitations with Current Proposals

Current failover mechanisms (§II-A) allow devices to re-
cover from some link/node/controller failures. When a failure
breaks the primary connection to a controller, the forwarding
device may use pre-calculated auxiliary connections. If the
disruption renders the controller instance unavailable, a device
follows a predefined list in order to attempt to connect to other
controller instances. The mechanics on how to define auxiliary
connections and the list of backup controllers are currently
unspecified.

In regard to controller placement strategies (§II-B), literature
proposes to tackle either controller-device disconnections or
controller overload. While the former is currently limited to
using shortest-paths only, the latter assumes that controllers
have been already optimally placed and simply determines the
assignment of devices to controllers. In sum, a proper solution
needs to efficiently recover from controller-device disconnec-
tions whenever feasible and optimally position controllers to
reduce the chance of overload before and after failures.

III. SURVIVOR

A. Overview

As previously discussed, Survivor deals with three main
aspects: connectivity, capacity, and recovery. Towards this end,
the strategy is divided in two parts. The first defines placement
for controller instances, while the second specifies a list of
backup controllers for each device in the network. Both parts
are expressed as optimization problems.

Placing controller instances. The first part requires finding
optimal placements for controller instances such that con-
nectivity is maximized and capacity constraints are satisfied.
In order to maximize connectivity, the algorithm chooses
positions that yield the highest number of node-disjoint paths
between the forwarding devices and the controller instance
they connect to. In turn, dealing with resource constrains
requires some intuition about device demands and controller
capacity. Estimates for device demands can be obtained with
network measurements [10], while controllers capacity can
be inferred through experimentation [11]. In addition, upon
disruptions in the network, some forwarding devices may be
moved from one controller instance to another. This situation
may cause a controller to get overloaded, leading to request

delays or losses. To sustain exceeding demands, each con-
troller has a percentage of capacity reserved as backup. This
algorithm is implemented using Integer Linear Programming
(ILP), which guarantees optimality. The model is presented in
Section III-B.

Composing a list of backup controllers. The second
part consists in defining an ordered list for each device
using a given heuristic. Interestingly, several heuristics can be
composed using the same principle: optimize a local metric
and generate an ordered list. Accordingly, the heuristics used
in this paper were implemented using a generic framework.
This framework, its related assumptions, and the implemented
heuristics are described later (§III-C).

B. Implementation of an Optimal Controller Placement

Input. Tuple I = {G(N,L); C; Ui; Ri; DPi,j ; αi}
represents the input of the ILP. The physical topology is
denoted by an undirected graph G = (N,L), where nodes
n ∈ N represent forwarding devices and edges (n,m) ∈ L
represent bidirectional links. The set of possible controller
instances is given by C. The capacity of each controller c ∈ C
is denoted by Uc, while the request demand of each device
n is represented by Rn. Additionally, DPn,m gives the pre-
calculated number of node-disjoint paths between nodes n and
m. Finally, αc : c ∈ C indicates the percentage of backup
capacity set to each controller.

Output. The tuple V = {xi,j ; yi,j ; wi,j} represents the
variables of the ILP. Device mappings are given by xn,c ∈
{0, 1}; they indicate whether device n is mapped to controller
c. Controller placements are denoted by yc,n ∈ {0, 1}; they
indicate whether controller c is placed on top of (i.e., is
physically connected to) node n. Lastly, wc,n ∈ N counts the
number of disjoint paths between controller c and device n;
this last variable holds 0 when n is not mapped to c.

Objective. The general goal of the proposed strategy is
to maximize connectivity between forwarding devices and
controllers instances. This goal is modeled as equation

max

∑
c∈C

∑
n∈N

wc,n

|N |
, (1)

which maximizes the average of disjoint paths between devices
and their controller.

Constraints. The constraints of this ILP model can be
divided into three categories: placement-related, capacity-
related, and connectivity-related.

The first four constraints [Constr. (C1)–(C4)] are placement-
related. They ensure correctness for both the placement of
controller instances in the topology and the mapping of devices
to controller instances. Constraint (C1) guarantees that, for all
devices (i.e., ∀n ∈ N), each device n will be controlled by
exactly one controller c (i.e., ∑

c∈C
xn,c = 1).

∑
c∈C

xn,c = 1 ∀n ∈ N. (C1)

TABLE I
SUMMARY OF SYMBOLS FOR THE ILP MODEL.

Symbol Definition
N Set of network nodes (i.e., forwarding devices).
L Set of links.
C Set of controllers.
Uc Maximum number of requests that controller c can handle.
Rn Number of requests of each device n.
DPn,m Number of disjoint paths between node pairs n and m.
αc Percentage of capacity reserved as backup in controller c.

xn,c ∈ {0, 1} Indicates whether device n is mapped to controller c.
yc,n ∈ {0, 1} Indicates whether controller c is placed onto node n.
wc,n ∈ N Indicates the number of disjoint paths between device n and

controller c. ∗(0 if device n is not mapped to controller c)

Constraint (C2) is twofold: (i) assigned controllers must be
active (i.e., xn,c ≤

∑
m∈N

yc,m); and (ii) a controller cannot be

placed in more than one location (i.e., ∑
m∈N

yc,m ≤ 1).

xn,c ≤
∑
m∈N

yc,m ≤ 1 ∀c ∈ C,∀n ∈ N. (C2)

Constraint (C3) ensures that two controllers will not be
placed in the same location, while Constraint (C4) guarantees
that if the controller c is placed onto node n (i.e., yc,n = 1), then
the device n should be mapped to controller c (i.e., xn,c = 1).∑
c∈C

yc,n ≤ 1 ∀n ∈ N ; (C3)

yc,n ≤ xn,c ∀n ∈ N, ∀c ∈ C. (C4)

The capacity-related constraint [Constr. (C5)] ensures that
the controller capacity will not be exceeded. It considers both
normal and backup capacities in the same formulation. Specif-
ically, for all controller instances (i.e., ∀c ∈ C), a controller
normal capacity [i.e., (1−αc) ·Uc] will not be exceeded by the
sum of all demand assigned to it (i.e., ∑

n∈N
xn,cRn).∑

n∈N
xn,cRn ≤ (1− αc) · Uc ∀c ∈ C. (C5)

The two final constraints [Constr. (C6.1) and (C6.2)] are
connectivity-related. They are used to count the number of
disjoint paths in each controller-device mapping. These con-
straints are trickier to interpret, as they work in conjunction
and depend on the objective function. The constraints represent
two cases. When device n is mapped to controller c (xn,c = 1),
wc,n is upper bounded by the disjoint paths between m and
c’s placement (n), which is given by DPn,m [Constr. (C6.1)].
In contrast, when device n is not mapped to controller c
(xn,c = 0), wc,n is upper bounded by 0 [Constr. (C6.2)].
In short, Constraint (C6.1) is always set to DPn,m, while
Constraint (C6.2) is either 0 or infinity, depending on xn,c.

wc,n ≤
∑
m∈N

yc,m · DPn,m ∀c ∈ C, ∀n ∈ N ; (C6.1)

wc,n ≤ xn,c · κ ∀c ∈ C,∀n ∈ N : κ→∞. (C6.2)

Constraints (C6.1) and (C6.2) set upper bounds for wc,n,
which are the exact values that it should hold. In other words,

wc,n should always be assigned its upper bound. This is
ensured by the objective function [Eq. (1)], which always tries
to maximize the value for wc,n.

C. Heuristics for Defining Lists of Backup Controllers

This subsection first introduces the assumptions and nota-
tions used as base for the algorithms. Next, it describes a
generic framework for designing heuristics that compose the
lists of backup controllers, eliminating the need to manually
determine the list. Then, it presents two heuristics as proof
of concept, one based on proximity and the other based on
residual capacity.

Assumptions. The generic framework makes three assump-
tions. First, controller failures are considered the worst cases
for disconnections; while this is not always true, it can be
expected for all practical purposes since, as demonstrated in
experiments (§IV), the proposed strategy greatly reduces the
chance of disconnections due to other disruptions. Second,
controllers are assumed to fail independently; this can also
be presumed in practice, as current architectures implement
mechanisms to ignore controller instances when they fail,
protecting the remaining ones [2], [3]. Third, each index on the
list is considered to be independent, as all instances will follow
their ordered list; in other words, all devices are expected
to use the same index (mostly the first) on the same failure
scenario.

Notation. Most notations used in the following algorithms
are intuitive. However, some considerations must be made.
Particularly, brackets ([.]), star (∗), and plus sign (+) have
special meanings. Brackets are used to define indices in
ordered lists, that is, [i] indicates an earlier position than [j]
for all i < j. Star is used to indicate that a given operation
is performed to all indices of a list. Lastly, plus sign is used
to indicate that a comparison is performed to all indices of a
list, subject to at least one comparison being true.

Generic framework. The pseudo-algorithm of the frame-
work is described in Algorithm 1. It begins by considering
all controller instances that were placed in the topology
(line 3). Due to the first and second assumptions, controllers
are evaluated independently. Next, for each index on the list
(line 4), it initializes a list of candidates, which is composed
by all controllers except the one being evaluated (line 5).
Similarly to controllers, indices are evaluated independently
due to the third assumption.

The following steps select all devices connected to the
evaluated controller and optimize the ith index on their list
(lines 6-10). Three operations are performed: select local
optimum (line 8), set list index (line 9), and update candidate
list (line 10). The select local optimum operation consists
of evaluating all possible candidates, given by set S (i.e.,
S ← K \ Bn[∗]), and then selecting the best among them
according to a given metric (i.e., ϕ(n, S) = b).

Set list index is solely an attribution operation. In contrast,
the update candidate list operation follows a specification (i.e.,
δ) to update information about the controllers of the candidate
list. It is important to realize that operations performed by

the update procedure are temporary, as they are performed in
set K, which, in turn, is reset in line 5. The aforementioned
operations use two generic procedures: ϕ(n, S) (which finds
the local minimum) and δ (which updates candidates). These
procedures have specific meanings for each heuristic and will
be exemplified in the following.

Algorithm 1: Generic heuristics framework for composing
the lists of backup controllers

1: Bn[∗]← ∅, ∀n ∈ N
2: ListLength ← max(|B∗|)
3: for c ∈ C : yc,+ = 1 do // only get placed controllers
4: for i← 1 upto ListLength do
5: K ← C \ {c} // initialize the list of candidates
6: for n ∈ N : xn,c = 1 do // only get connected devices
7: S ← K \Bn[∗] // discard already used
8: select b ∈ S : ϕ(n, S) = b // get local optimal
9: Bn[i]← b // set b in the ith index of n’s list

10: update K according to rule δ
11: end for
12: end for
13: end for
14: return Bn

Proximity-based heuristic. This heuristic attempts to select
the closest controller instances to use as backup (in terms of
delay or hops). To implement this heuristic, one is required
to define ϕ(n, S) as a procedure that takes device n and the
set of valid controller candidates S, and returns the closest
instance. This can be achieved by implementing a shortest-
paths algorithm inside ϕ(n, S). The update rule is not required
since controllers do not change positions.

Residual capacity-based heuristic. This heuristic attempts
to account for resource consumption while selecting controller
instances. More specifically, it selects the controller instance
that has the highest residual capacity, and updates this instance
according to the exceeding demand. Accordingly, ϕ(n, S) is a
linear search for the maximum residual capacity, while δ adds
the demand of device n to controller n in set k. As previously
stated, operations performed by the update procedure are
temporary.

IV. EVALUATION

A. Methodology

This section introduces the methodology employed to com-
pare Survivor with the state-of-the-art on survivable controller
placement.

Workload. The analysis takes as input the network design
given by each placement strategy and then simulates multiple
failure scenarios. Three different WAN topologies were con-
sidered2: Internet2 (10 nodes, 15 links), RNP (27 nodes, 33
links) and GÉANT (40 nodes, 61 links). These environment
assumes that nodes would be OpenFlow-capable devices and
that controllers could be provisioned at any of these nodes’
locations. Additionally, capacities and demands were based on
studies from literature. All controllers have the same capacity,

2Topology maps were acquired in January 2014, from the Internet Topology
Zoo: http://www.topology-zoo.org/

1800 kilorequests/s [11], while each forwarding device in turn
generates 200 kilorequests/s [10]. Finally, the percentage of
resources set as backup is 30%.

Comparison Method. Survivor (SVVR) is compared with
two versions of the one developed by Zhang et al. [4]. The
original version of the algorithm is composed by two steps: (i)
identify partitions in the network topology with minimum cuts
across boundaries; and (ii) assign one controller to the location
which has the shortest paths to all devices in the same cluster.
This strategy is denoted MCC, which stands for MinCut-
Centroid. Additionally, a natural extension of this algorithm,
denoted MCC+, consists of considering all available paths
between controller and devices. The algorithm runs as usual,
but after controller instances are placed, connections are made
using all available node-disjoint paths.

Metrics. Resulting topology designs are analyzed in terms
of resilience to disruptions and overload. Resilience repre-
sents the capacity of the evaluated strategies to sustain loss
of connectivity upon controller or link disruptions. In its
turn, overload indicates how controller instance loads are
distributed during normal operation and after failures. Four
metrics are used, the first two quantify resilience, while the
last two measure overload. For fairness of comparison, the
first evaluation considers the same resilience equation used
by Zhang et al. [4]; this equation measures the probability of
connectivity loss in a uniform failure scenario. The second
metric uses cardinal of edge-connectivity [12] to calculate
the percentage of disconnected components given all possible
failure scenarios. The third metric counts the number of over-
loaded controllers on all possible failure scenarios. Finally,
the fourth metric shows the load distribution for each of the
controller instances.

B. Results

This section compares the Survivor (SVVR) against liter-
ature (MCC/MCC+) using the four metrics presented earlier.
For ease of exposure, Survivor is illustrated using full-black
lines, whereas MCC (or MCC+) using dotted lines (which are
green, if color is available).

1) Survivor reduces the probability of connectivity loss:
The first evaluation (shown in Fig. 1) considers that network
elements (i.e., nodes and links) fail independently and then
measures the probability of a controller-device connection be
interrupted. Axis x represent the failure probability assigned
to all network elements (that is, 0.01 means all nodes and
links have 1% chance of failing); in turn, the y axis yields
the probability of a connectivity loss. Fig. 1(a) shows values
from 1% to 10% (the same used by Zhang et al. [4]), while
Fig. 1(b) extrapolates the analysis to the entire range (0% to
100% probability of failure).

Fig. 1(a) shows that Survivor outperforms MCC consis-
tently, and also substantially, for all probabilities (in the x axis)
but the extremes 0 and 1. More importantly, the curves repre-
senting Survivor behavior have a slower growing factor than
MCC. As can be observed, when elements have 1% chance of
failure both strategies behave similarly (less then 8% chance of

connectivity loss). As the chance of failure increases to 5%, the
probability of connectivity loss for Survivor is less than half of
that for MCC. In this case, Survivor has stayed bellow 10%,
while MCC has increased above 20%. Moreover, although the
relative difference between both strategies decrease, Fig. 1(b)
shows that Survivor reaches near 100% of connectivity loss
much later than MCC. While the probability of connectivity
loss of Survivor is still around 80% when the chance of failure
is 60%, MCC is already near 100%.

The observed improvement happens because in MCC a
single element failure can break one or multiple controller-
device connections; yet in Survivor, it is required at least one
element failure per controller-device path. This seems to be
a direct effect of exploring path diversity during placement.
The next experiment provides further evidence of this behavior
and shows that considering path diversity after placement is
insufficient.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pr
ob

ab
ilit

y
of

 c
on

ne
ct

iv
ity

 lo
ss

Failure Probability

SVVR
GEANT

MCC[4]
RNP

INTERNET2

gain

(a) Probability distribution 0.01% to 10%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ilit

y
of

 c
on

ne
ct

iv
ity

 lo
ss

Failure Probability

SVVR
GEANT

MCC[4]
RNP

INTERNET2

gain

(b) Probability distribution 0% to 100%.

Fig. 1. Probability of controller-device connectivity loss for different failure
probabilities. Values are obtained using the equation in [4]. The lower the
curve, the better.

2) Path diversity increases the network survivability, and it
requires explicit consideration to be fully explored: Fig. 2 ex-
presses a CDF of the number of disconnected elements, when
enumerating all possible failure scenarios. Three variations are
evaluated: single link failure, 3 concurrent link failures, and
6 concurrent link failures. These variations will be denoted
k = 1, k = 3, and k = 6, respectively. Moreover, results were
similar for all topologies, thus, due to space constraints, only
the larger one – GÉANT – is shown.

Results in Fig. 2(a) compare Survivor to MCC. For single
link failures, SVVRk=1 achieves twice the protection (80%)

than MCCk=1. Moreover, the worst case in SVVRk=1 is only
one disconnected device, while in MCCk=1 there may be up
to 8 disconnected devices. Finding: the probability of a single
link failure affecting all connections of even one device is much
smaller (100%−∼20%

∼60%
≈ 66% less) than that of affecting a single

connection of one or multiple devices.
Fig. 2(a) also shows that Survivor in the scenario with 3 and

6 concurrent link failures occasionally outperforms MCC in
single link failures. SVVRk=3 and MCCk=1 behave similarly
in 80% of cases, but SVVRk=3 outperforms MCCk=1 in
the remaining 20%. More importantly, the remaining 20%
represent worst case scenarios; in such scenarios SVVRk=3

disconnects at most 6 devices, whereas MCCk=1 disconnects
up to 8. Additionally, for SVVRk=6 and MCCk=1, there is a
turning point around 90%. When considering 6 concurrent fail-
ures for both, this difference is more noticeable. In SVVRk=6,
the worst 20% disconnection cases have between 3 and 11
disconnected devices; in MCCk=6, the same [3, 11] interval
happens in 80% of the cases (from 10% up to 90%). In this
interval, Survivor is 75% less likely to disconnect the same
amount of devices (100%− ∼20%

∼80%
≈ 75%).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

%
 o

f f
ai

lu
re

 s
ce

na
rio

s

of Disconnected elements

SVVR MCC[4]

1

3

6

(a) Survivor x MCC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

%
 o

f f
ai

lu
re

 s
ce

na
rio

s

of Disconnected elements

SVVR MCC+

1

3

6

(b) Survivor x MCC+.

Fig. 2. Cumulative distribution function of disconnected devices for all
possible cases of 1, 3, and 6 link disruptions in the GÉANT topology. Curves
closer to the top-left side are better.

Finally, in order to evaluate the effectiveness of the Survivor
placement strategy, path diversity is added to MCC after
placement; this modification is denoted MCC+. Fig. 2(b)
shows that Survivor still outperforms MCC+ in all cases.
Finding: adding path diversity after placement in insufficient,
as MCC+ has 2-3 times more disconnected devices in worst
cases; 3

1
= 3, 19

6
≈ 3, and 22

11
= 2, for k = 1, k = 3, and k = 6,

respectively (worstMCC+
worstSurvivor

).
3) Network convergence after disruptions is highly sensible

to predefined information in failover mechanisms: Fig. 3 shows
the number of overload scenarios considering all controller
instances. Each overload scenario counts as a single controller
instance that had a load higher than 100%. The analysis con-
siders three cases of network operation: normal, post-failure
with proximity-based failover heuristic, and post-failure with
residual capacity-based failover heuristic. In normal operation
Survivor has not a single overloaded controller instance. This
happens because the placement strategy is capacity-aware
and, thus, avoids overloads when assigning devices to con-
trollers. In contrast, MCC has demonstrated a small number
of overloaded controller instances during normal operation.
This behavior arises from the fact that MCC only considers
a centroid heuristic when assigning devices to controllers.
Hence, in some cases, a controller instance happens to have a
much higher load.

After disruptions, the failover mechanism employed the lists
created by the two heuristics proposed earlier (§III-C). Evalu-
ation shows that failover mechanisms perform very differently
depending on the way their backup lists were composed. The
residual capacity-based heuristic outperformed the proximity-
based one for both MCC and Survivor. Even though Survivor
had set backup resources, some instances were still overload
in the proximity-based heuristic. This behavior becomes more
evident in the next evaluation.

 0

 5

 10

 15

 20

SVVR MCC[4] SVVR MCC[4] SVVR MCC[4]

#
 o

f
o
v
e
rl
o
a
d
 s

c
e
n
a
ri
o
s

Normal
Operation

Failover strategy:
Proximity

Failover strategy:
Residual Capacity

Fig. 3. Number of overload scenarios (controller load >100%) during
network normal operation and two post-failover operation cases. The lower
the bars, the better.

4) Controller overload can be handled proactively by adding
capacity-awareness and setting backup resources: The pre-
vious evaluation shown that different kinds of information
used during failover yield sensible performance impact. This
evaluation takes a closer look in the state of the network
after convergence to better understand the observed behavior.
Towards this end, Fig. 4(a) shows the load on each controller
considering all failure scenarios. Values indicate the minimum,
maximum, average and mode loads.

As observed, even though placements end up with enough
free capacity, the proximity heuristic (Fig. 4(a)) tends to
overload some instance(s) (e.g., C3 in Survivor and C1, C2,
and C6 in MCC). For the Survivor placement, the maximum
and minimum values have high differences for all controllers

and the average varies, but the mode in particular shows that
controller instances have their load close to the minimum in
most cases. This happens because most devices select the
same backup controller when their primary controller fails,
thus leaving other controllers with their original load. The
MCC placement shows similar results, but the variation among
values tends to be higher because the initial placement is
already unbalanced.

In contrast, the residual capacity heuristic (Fig. 4(b)) tends
to leave the load more evenly distributed. In the Survivor
placement, the maximum, minimum, average, and mode have
almost the same value. This happens because devices will
attempt to connect to different controllers in the network, and
will prefer those with higher residual capacity. As a result, the
load on controllers increases, but none of them overloads. In
this case, MCC behaves differently than Survivor. This can be
explained by the fact that in MCC, controllers C2, C3, and
C7 were assigned a higher load (in comparison to the other
controllers) during the initial placement – in fact, C2 and C7
were overloaded. As a result, controllers C1, C4, C5, and C6
were the only ones assigned during failover and their load
variations are similar.

 0

 50

 100

 150

 200

 250

 300

 C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7

Lo
ad

 (%
)

SVVR MCC[4]

(a) Proximity-based heuristic for failover mechanism.

 0

 50

 100

 150

 200

 250

 300

 C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7

Lo
ad

 (%
)

SVVR MCC[4]

(b) Residual Capacity-based heuristic for failover mechanism.

Fig. 4. Mininum, maximum, average (square), and mode (star) values
for the load in each controller instance (labeled C1-C7) after failover.
Placement strategies (Survivor and MCC) are boxed for ease of exposition
and comparison. Results are shown for the GÉANT topology.

V. CONCLUSION AND FUTURE WORK

SDN has altered the requirements for network survivability,
as the main challenge became maintaining the connectivity
between the controller and the forwarding devices upon dis-
ruptions in the network. Previous work has relied on strong

assumptions in order to simplify the problem. This paper
presented Survivor, a novel approach that is shown to improve
survivability in SDN. The main improvements in comparison
to previous work are: (a) considering multiple paths explicitly;
(b) dealing with capacity during initial placement; and (c)
developing smarter failover mechanisms.

Main findings showed that: (i) exploring path diversity
during placement reduces the chance of connectivity loss; (ii)
adding path diversity to current solutions was not sufficient;
(iii) adding capacity-awareness to the solution was essential,
otherwise controller instances might get overloaded on both
normal and failover scenarios; and (iv) the heuristic for se-
lecting backups during failover has substantial impact on the
converging state of the network. In future work, the evalu-
ation should be extended to consider specific environments,
such as other topologies and failure scenarios. Additionally,
more aspects could be explored in order to further improve
survivability.

ACKNOWLEDGMENT

This work has been supported by FP7/CNPq (Project SecFuNet,
FP7-ICT-2011-EU-Brazil).

REFERENCES

[1] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and re-
search challenges of hybrid software defined networks,” ACM Computer
Comm. Review, vol. 44, no. 2, April 2014.

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” in
Proc. OSDI. USENIX, 2010, pp. 1–6.

[3] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. SIGCOMM
HotSDN workshop. ACM, 2012, pp. 19–24.

[4] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in Proc. GLOBECOM. IEEE, 2011, pp. 1–6.

[5] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-
aware controller placement for software-defined networks,” in Proc. IM.
IEEE, 2013, pp. 672–675.

[6] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in Proc. CNSM. IEEE, 2013, pp. 1–8.

[7] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in Proc. NSDI.
USENIX, 2013, pp. 113–126.

[8] ONF, “Openflow switch specification 1.4.0,” Available at
<https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf>,
2014.

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. SIGCOMM HotSDN Workshop. ACM, 2012, pp.
7–12.

[10] I. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot, “Uncovering
artifacts of flow measurement tools,” in Proc. PAM. Springer-Verlag,
2009, pp. 187–196.

[11] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proc. Hot-
ICE Workshop. USENIX, 2012, pp. 10–10.

[12] K. Bagga, L. Beineke, R. Pippert, and M. Lipman, “A classification
scheme for vulnerability and reliability parameters of graphs,” Mathe-
matical and Computer Modelling, vol. 17, no. 11, pp. 13 – 16, 1993.

